Stress Waves and Characteristics of Zigzag and Armchair Silicene Nanoribbons

نویسندگان

  • Yu-Cheng Fan
  • Te-Hua Fang
  • Tao-Hsing Chen
چکیده

The mechanical properties of silicene nanostructures subject to tensile loading were studied via a molecular dynamics (MD) simulation. The effects of temperature on Young's modulus and the fracture strain of silicene with armchair and zigzag types were examined. The maximum in-plane stress and the corresponding critical strain of the armchair and the zigzag silicene sheets at 300 K were 8.85 and 10.62, and 0.187 and 0.244 N/m, respectively. The in-plane stresses of the silicene sheet in the armchair direction at the temperatures of 300, 400, 500, and 600 K were 8.85, 8.50, 8.26, and 7.79 N/m, respectively. The in-plane stresses of the silicene sheet in the zigzag direction at the temperatures of 300, 400, 500, and 600 K were 10.62, 9.92, 9.64, and 9.27 N/m, respectively. The improved mechanical properties can be calculated in a silicene sheet yielded in the zigzag direction compared with the tensile loading in the armchair direction. The wrinklons and waves were observed at the shear band across the center zone of the silicene sheet. These results provide useful information about the mechanical and fracture behaviors of silicene for engineering applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

First Principles Study on the Electronic Structure and Interface Stability of Hybrid Silicene/Fluorosilicene Nanoribbons

The interface stability of hybrid silicene/fluorosilicene nanoribbons (SFNRs) has been investigated by using density functional theory calculations, where fluorosilicene is the fully fluorinated silicene. It is found that the diffusion of F atoms at the zigzag and armchair interfaces of SFNRs is endothermic, and the corresponding minimum energy barriers are respectively 1.66 and 1.56 eV, which ...

متن کامل

Spin-polarized transport through a zigzag-edge graphene flake embedded between two armchair nanoribbons electrodes

We study the coherent spin-polarized transport through a zigzag-edge graphene flake (ZGF), using Hubbard model in the nearest neighbor approximation within the framework of the Green function’s technique and Landauer formalism. The system considered consists of electrode/ (ZGF)/electrode, in which the electrodes are chosen to be armchair nanoribbons. The study was performed for two types of ele...

متن کامل

Investigation of electron correlation effects in armchair silicene nanoribbons

In this study, the electronic structure of armchair silicene nanoribbons (ASiNRs) is investigated for various widths using first-principle calculations and the framework of the density functional theory. Electronic structure of ASiNRs shows a direct band gap which is decreased  with increasing the nanoribbon's width, showing an oscillatory behavior. The effective Coulomb interaction between loca...

متن کامل

Edge Stability of BN sheets and Its Application for Designing Hybrid BNC Structures

First-principles investigations on the edge energies and edge stresses of single-layer hexagonal boron-nitride (BN) are presented. The armchair edges of BN nanoribbons (BNNRs) are more stable in energy than zigzag ones. Armchair BNNRs are under compressive edge stress while zigzag BNNRs are under tensile edge stress. The intrinsic spin-polarization and edge saturation play important roles in mo...

متن کامل

Symmetries and the conductance of graphene nanoribbons with long-range disorder

We study the conductance of graphene nanoribbons with long-range disorder. Due to the absence of intervalley scattering from the disorder potential, time-reversal symmetry (TRS) can be effectively broken even without a magnetic field, depending on the type of ribbon edge. Even though armchair edges generally mix valleys, we show that metallic armchair nanoribbons possess a hidden pseudovalley s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016